

Structural Assessment of Crane on Heavy Lift Ship

with Load Check and Fatigue Life Calculation

Udit Sood

Supervisors: Prof. Dr.Eng./Hiroshima Univ. Patrick Kaeding, University of Rostock

Dr.-Ing. Thomas Lindemann, University of Rostock

Internship Supervisor: Mr. Helge Rathje, SAL Heavy Lift GmbH, Hamburg, Germany

Reviewer: Prof. Maciej Taczala, University of Poland

Traditio et Innovatio

Rostock, Feburary 1/ 2016

Major Goals Achieved

183 Ship Cranes

Fatigue Calc.

Cranes:	2 x 1,000 mtons SWL, combinable up to 2,000 mtons.				
Capaicity:	1,000 MT@16m outreach800 MT@25m outreach500 MT@38m outreach				
Slewing:	360 degree with hydraulic motor drive				
Luffing :	18.17 degree to 84.35 degree				
Hoisting:	Maximum boom tip height of 37.3 meters				
Operating: Conditions	5.4 degree inclination(5 degree Heel and 2 degree trim.)				
Wind Speed:	20m/sec				

Fatigue Calc.

Lloyds Register Rules and Guidelines Load case Type 1

 $Crane\ Loads = F_d\left(L_g + F_h(L_1 + L_{h1}) + L_{h2} + L_{h3}\right)$

• F_d =Duty factor

Scope

- L_g =dead load
- F_h =Live load
- L_l=Hoisting factor
- L_{h1} =Horizontal component due to the heel and trim.
- L_{h2} =The next most unfavourable horizontal load.
- L_{h3} = The horizontal component due to the heel and trim.

Load case Type 2

 $Crane\ Loads = F_d\left(L_g + F_h(L_1 + L_{h1}) + L_{h2} + L_{h3}\right) + L_w$

• L_w =The most unfavourable wind load

Load case Type 3

the crane is considered in the stowed position

height above hatch cover

25m - 800t

Analysing the Load Cases

	Load Case Boom a S.No. (degr		load SWL (tons)	Outreach	Weight of Boom(t)	Total Weight	Force P(KN)
	1	69.74	1000	16	152	1152	11301.12
	2	54.04	800	25	152	952	9339.12
	3	18.17	500	38	152	652	6396.12
	4	54.04	500	25	152	652	6396.12
1 1	5	69.74	500	16	152	652	6396.12
	6	18.17	350	38	152	502	4924.62
	7	54.04	350	25	152	502	4924.62
	8	18.17	250	38	152	402	3943.62
R. 10. 12. 14. 16. 1 16m - 1000t -	8.20.22.24 26.28.30.32.34.36 38m - 500t	Physical co Wind co List of sh Trim of s Ship spe Tempera Materia Wire stift No influe	nditions at 20 nip 2 degree ship 5 degree ed zero durin ature less than I of structure ffness and ma ence of waves	considere Om/sec og cargo op n 150 degr steel S355 oterial prop s	ed: eration ee perties mat	ched wit	h real crane

3.2 SWL 1000t 16m	Validatio	n of result	with m	anufacturer I	Data
Verforming 305.4 308.5 228.7 28.8 28.8 28.0 10.1 10.		Global Deformations u (mn) 350.3 318.5 228.6 254.8 222.9 191.1 159.2 127.4 96.5 63.7 31.8 0.0 Max : 350.3 Min : 0.0	Verformungen lul (mm) 61.3 55.7 50.2 44.6 39.0 33.4 27.9 22.3 16.7 11.1 5.6 0.0 Max : 61.3 Min : 0.0	A VENERAL A	45 64d0 Deformations 94d0 Deformations 9min 42,7 34,4 34,1 34,1 32,9 25,6 21,3 17,1 128 85,5 43,0 00 Mm : 0.0 Mm : 0.0 147,9 1 128 25,6 130 1 147,9 1 15,942 1 15,942 1
Study	MFG FEM	Design FEM		MFG FEM	Design FEM
Deflection:	350.4mm	350.3mm		61.3mm	46.9mm
Model Wt:	152 tons	151.7 tons		157 tons	156.7 tons
Material	940KN/mm^2, 102KN/mm^2	940KN/mm2, 102KN/mm2		Steel S-355	Steel S-355

Analysis

Simulation

Comparison

<u>Scope</u>

Introduction

Fatigue Calc.

Conclusion

Simulation

Analysis

Introduction

Scope

Comparison

Fatigue Calc.

Conclusion

Plate Analysis

- Carried out to check failure of plate
- Notch case of 120 to 160 used
- Analysed by coarse grid stresses
- MATLAB program used for analysis

Weld Analysis

- Carried out to check failure of welds
- Notch case of 80 to 120 used
- Analysed by special fatigue finite element module
- More elaborate approach used for analysis

Locating Maximum Fatigue Damage

Maximum damage given by manufacturer

Outreach	SWL	Damage ratio for 1 load cycle	Load cycles	Damage ratio
[m]	[t]	D_1	n	D
< 16	≤ 500	0,00005968	1040	0,006206235
2 10	≤ 1000	0,000031545	2080	0,065612683
	≤ 350	0,00009908	3120	0,030913944
≤ 25	≤ 500	0,000020310	3120	0,063366019
	≤ 800	0,000061810	3120	0,192845744
	≤ 250	0,000020435	3120	0,063757248
≤ 38	≤ 350	0,000031758	3120	0,099084534
	≤ 500	0,000067995	2080	0,141428567
		Total	20800	0,663214975

Maximum damage calculated on welds :

Damage difference=0.71-0.663=0.047

=~ 0.71

1.00

Introduction	<u>Scope</u>	<u>Comparison</u>	<u>Analysis</u>	<u>Simul</u>	ation	Fatigue Ca	<mark>lc.</mark> Co	nclusion
Plate fatigue determination			Ģrid Number Column1	X cordinate Column2 1 10. 2 10. 3 10. 4 10.	Y Cordinate Column3 4611 -0.91 4612 0.41 4612 -0.084 4612 -0.584	Z Cordinate Column4 53 24.009 53 -24.009 17 -24.009 17 -24.009	Damage at each Grid Column5 5 0.1572 5 0.1511 5 0.1508 5 0.1515	
• Grid st	resses ob	otained			5 10. 6 9. 7 9. 8 9.	4613 -1.084 9921 0.919 9921 0.419 9921 -0.084	17 -24.009 53 -24.182 53 -24.182 17 -24.182	5 0.1686 7 0.16 7 0.187 7 0.187
Plate joining locatedNotch case of 120 to 160					9 9. 10 9. 11 9 12 9	9922 -0.584 9922 -1.084 .523 0.915 .523 0.415	17 -24.182 17 -24.182 17 -24.182 162 -24.355 162 -24.355 162 -24.355	7 0.1741 17 0.154 18 0.1492 18 0.1548
DamagCumula	 Damage found at each grid point Cumulative damage found by summing 				13 9. 14 9. 15 9. 16 9.	5231 -0.084 5231 -0.584 5231 -1.084 0539 0.911	48 -24.355 48 -24.355 48 -24.355 52 -24.52	8 0.1788 8 0.1495 8 0.1536 9 0.1699
the resu	ults of 8	load cases			17 9 18 9 19 9 20 9.	.054 0.41 .054 -0.084 .054 -0.584 0541 -1.084	52 -24.52 18 -24.52 18 -24.52 18 -24.52	9 0.1633 9 0.1617 9 0.1621 9 0.1641
					1 4. 2 4. 3 5. 4 4.	0707 2.074 5398 2.074 0088 2.074 2234 1.866	17 -10.154 17 -9.981 17 -9.808 15 -10.568	6 0.1551 5 0.1561 3 0.1534 2 0.1634
					5 4. 6 5. 7 4.	6924 1.860 1615 1.860 2942 1.41	95 -10.395 95 -10.221 15 -10.760	1 0.1525 9 0.1659 1 0.1547

Design equations and the calculation of the parameters:

0

•
$$\Delta \sigma \leq 1.5 x f_y$$

• $\Delta \tau \leq \frac{1.5 f_y}{\sqrt{3}}$
• $\left(\frac{\gamma_{Ff} \cdot \Delta \sigma_{E,2}}{\Delta \sigma_C / \gamma_{Mf}}\right)^3 + \left(\frac{\gamma_{Ff} \cdot \Delta \tau_{E,2}}{\Delta \tau_C / \gamma_{Mf}}\right)^3 \leq 1.$

Important Findings

- Maximum boom outreach (38mts) is the limiting load case
- Housing deflections are maximum (46.9mm)
- Horizontal bearing forces are maximum
- Maximum fatigue damage is found to occur on the boom tip after 25 years of lifetime
- Structure welds are more prone to fatigue failure compared to the plating
- The housing bottom plating and the foundation shape is critical for analysis and hot spot point of view
- The window areas on housing need to be minimized to give more structural strength

Structural Assessment and Fatigue Life Determination Tool in Order to Simplify the Inspection Task Onboard